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Trajectory and flow properties for a rod spinning
in a viscous fluid. Part 1. An exact solution
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An exact mathematical solution for the low-Reynolds-number quasi-steady
hydrodynamic motion induced by a rod in the form of a prolate spheroid sweeping
a symmetric double cone is developed, and the influence of the ensuing fluid motion
upon passive particles is studied. The resulting fluid motion is fully three-dimensional
and time varying. The advected particles are observed to admit slow orbits around
the rotating rods and a fast epicyclic motion roughly commensurate with the rod
rotation rate. The epicycle amplitudes, vertical fluctuations, arclengths and angle
travelled per rotation are mapped as functions of their initial coordinates and rod
geometry. These trajectories exhibit a rich spatial structure with greatly varying
trajectory properties. Laboratory frame asymmetries of these properties are explored
using integer time Poincaré sections and far-field asymptotic analysis. This includes
finding a small cone angle invariant in the limit of large spherical radius whereas
an invariant for arbitrary cone angles is obtained in the limit of large cylindrical
radius. The Eulerian and Lagrangian flow properties of the fluid flow are studied and
shown to exhibit complex structures in both space and time. In particular, spatial
regions of high speed and Lagrangian velocities possessing multiple extrema per rod
rotation are observed. We establish the origin of these complexities via an auxiliary
flow in a rotating frame, which provides a generator that defines the epicycles.
Finally, an additional spin around the major spheroidal axis is included in the exact
hydrodynamic solution resulting in enhanced vertical spatial fluctuation as compared
to the spinless counterpart. The connection and relevance of these observations
with recent developments in nano-scale fluidics is discussed, where similar epicycle
behaviour has been observed. The present study is of direct use to nano-scale actuated
fluidics.

1. Introduction
The motion of fluids on small spatial scales has long been recognized as central to

the understanding of many phenomena in microbiology, including the swimming of
microorganisms (Hancock 1953; Taylor 1969), the transport of mucus in ciliated tissue
(Fulford & Blake 1986; Sleigh, Blake & Liron 1988; Matsui et al. 1998), and even the
elastic properties of DNA (Smith, Babcock & Chu 1997; Perkins, Smith & Chu 1999).
On small scales, the equations of motion are often taken to be the linear quasi-steady
Stokes equations. Though a major simplification with respect to the parent Navier–
Stokes system, these equations can still be mathematically challenging because of the
boundary conditions that arise typically in these applications, where fluid motion is
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generated by complicated solid, and sometimes flexible, fluid–structure interactions.
In turn, this fluid motion interacts with other bodies and walls, is modified, and
ultimately forces the structures which created the motion. These sorts of couplings
are especially strong in low-Reynolds-number (small-scale, highly viscous or slowly
moving) systems as long-range hydrodynamic interactions play a dominant role
compared to their high-Reynolds-number counterparts (Pozrikidis 1997). Fortunately,
these long-range penalties are mediated by the linearity of the Stokes equations,
and the problems are often amenable to either singularity methods or numerical
simulations, with the primary challenge being that of handling complex structure
geometries.

Recent advances in nano-scale manipulation (Chu 1991; Fisher et al. 2006)
have made possible the control of rigid and flexible objects immersed in fluids
on length scales smaller than the wavelength of visible light. On such scales,
the hydrodynamics necessarily occurs at low Reynolds numbers and it is subject
to thermal fluctuation. Under these circumstances, the proper interpretation of
experimental measurements under controlled actuation relies on accurate predictions
of the deterministic component of the hydrodynamics. In this paper, we focus on
developing the mathematically exact, low-Reynolds-number hydrodynamic motion
and tracer properties induced by spinning rods sweeping upright cones in viscous
fluids. Jing (2006) has demonstrated that this type of motion can be achieved
through a magnetic force microscope by synthetic rods 10 µm in length by 200 nm
in cross-sectional diameter fabricated from a nickel–iron alloy. In water, the ensuing
hydrodynamic interactions can move small non-magnetic micrometre-sized particles
in a non-trivial fashion. This periodic actuation results in particle motion that consists
of a small epicycle roughly commensurate to the rod’s rotation rate, superimposed
onto slow orbital motion around the precessing rod. The purpose of this paper is
to present detailed theoretical predictions regarding the behaviour of such tracers as
a function of their spatial location and the rod geometry (angle of inclination and
slenderness).

It should be noted that besides being a technological breakthrough, such actuated
controlled motions can replicate some that naturally arise in biological systems. These
motions have been demonstrated to have important consequences in the early stages of
foetus development in mammals (Sulik et al. 1994; Nonaka et al. 2002). In particular,
Kartagener’s syndrome (Kartagener 1933), an abnormal congenital condition whose
symptoms range from situs inversus to infertility (Afzelius 1976), is believed to be
associated with dysfunctional semirigid embryonic cilia that fail to perform motion
similar to the cone-sweeping rod precession by magnetic actuation in the experiments
by Jing (2006).

Motivated by these technological and biological observations, we present here the
exact analytical hydrodynamic solution for a rod sweeping an upright cone while spin-
ning on its axis in a Newtonian fluid, and study in detail the motion of passive particles
advected by these complicated three-dimensional unsteady fluid flows. The solu-
tions constructed here are built upon the singularity methods developed by Batchelor
(1970), Chwang & Wu (1975), Wu (1978) and Kim (1986) stemming from the classical
work of Edwardes (1892). The behaviour of the particle motion advected by these
complicated fluid flows strongly depends on spatial location which we map through
numerous statistics of trajectory properties.

The paper is organized as follows. In § 2, we overview the non-dimensionalizations
and limiting situations we intend to study in this work. In § 3, we develop the exact
hydrodynamic solution for a non-spinning rod sweeping a double upright cone in a
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Figure 1. A body sweeping out a double cone.

viscous fluid. In § 4, we present the detailed trajectory properties of particles advected
by this three-dimensional time-varying fluid motion. In particular, we show how
rod and cone geometry greatly affects the trajectories, and present detailed statistics
documenting the epicycle amplitude, arclength, angle swept per rotation and vertical
fluctuation. By working in the body frame, we identify the periodic orbits that yield
the epicyclic trajectories. In § 5, we discuss the flow properties, paying specific attention
to documenting the local fluid speed relative to rod orientation. In § 6, we present two
far-field asymptotic expressions of the flow and analyse the fluid particle dynamics
in the limit of large spherical radius. We demonstrate an explicit invariant of the
three-dimensional time-varying system in this limit which holds for small cone angles,
as well as an invariant for arbitrary cone angles at large cylindrical radial distances.
We present explicit formulae for the epicycle amplitude of particle trajectories in
each of these far-field systems. In § 7, we show how to incorporate an additional
axial rotation associated with the rod precession as it sweeps a cone in the fluid,
a situation experimentally observed in some circumstances. We document particle
trajectory properties with the addition of this extra spin.

2. Non-dimensional equations
The fundamental governing equations for an incompressible fluid system are given

by the Navier–Stokes equations

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u,

(2.1)
∇ · u = 0,

where ρ is the fluid density, u is the velocity field, p is the pressure, and ν is
the kinematic viscosity of the fluid. These equations describe the conservation of
momentum and mass, respectively.

The Reynolds number Re = �U/ν is a non-dimensional measure of inertial forces
to viscous forces where � and U are characteristic length and velocity scales in the
system of interest. Consider a body spinning about its midpoint sweeping out a
double cone in a low-Reynolds-number fluid system. The body’s motion is depicted
in figure 1 where κ is the cone angle and ϑ(t) is the angle swept out by the cone at
time t .

It is natural to define a characteristic time scale using the rotation rate of the body
ω = dϑ/dt . Another non-dimensional parameter arising in this problem, independent
of the Reynolds number, is the Strouhal number Sr = ω�/U , relating oscillation
frequency to fluid velocity. Using these characteristic scales, the Navier–Stokes
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equations are given in dimensionless primed variables as

SrRe
∂u′

∂t ′ + Re u′ · ∇′u′ = −∇′p′ + ∇′2u′,

∇′ · u′ = 0,

⎫⎬
⎭ (2.2)

where the primed differential operators denote differentiation with respect to the
primed variables. Let � be half the length of the rotating body and define U = ω � sin κ

to be the linear velocity of the body’s tip so that

SrRe =
ω � 2

ν
, Re =

ω �2 sin κ

ν
. (2.3)

For ω and � fixed, SrRe �1 and Re � 1 when the viscosity ν is large, independently
of cone angle κ . In this regime, the fluid equations reduce to the linear steady Stokes
equations

∇′2u′ − ∇′p′ = 0,

∇′ · u′ = 0.

}
(2.4)

Note that the time derivative of the velocity field in the Stokes equations can
be retained if SrRe ∼ 1 and Re � 1. For fixed � and large ν, this implies that ω is
large to maintain ω � 2/ν ∼ 1. The low-Reynolds-number assumption with these large
rotation frequencies ω can still be achieved when sin κ � 1. Hence, in the regime of
large rotation rates and small cone angles, the unsteady Stokes equations should be
considered.

In this paper, we examine fluid motion dictated by the steady Stokes equations.

3. An exact solution
Edwardes (1892) examined the motion of a viscous liquid owing to an ellipsoid

rotating about one of its axes. The exact solution was found through the use
of ellipsoidal coordinates. To demonstrate the ‘power of the singularity method’,
Chwang & Wu (1975) derived Stokes solutions for a prolate spheroid embedded in
uniform and certain linear flows using singularity theory. (A spheroid is an ellipsoid
with two of its axes equal.) Their objective was to build a collection of solutions
by distributing fundamental singularities along the interior centreline of the spheroid
between its foci. The description of the velocity field was given as a line integral of
singularities with the appropriate strengths. Wu (1978) and Kim (1986) recast the
more general ellipsoidal solutions of Edwardes as singularity solutions by distributing
singularities on the interior of the fundamental ellipse of the ellipsoid. The result
is a surface integral for the velocity field which collapses to the line integrals of
Chwang & Wu in the case of a prolate spheroid. To obtain the fluid motion due to
a body spinning about its midpoint sweeping out a cone, we adopt the strategy of
Chwang & Wu. We let our body be a prolate spheroid and impose a line distribution
of singularities on the centre of the spheroid between the foci. The superposition is
constructed so that the motion of sweeping out a cone is achieved.

3.1. From the body frame to the laboratory frame

Throughout this work, we will be describing fluid motion with respect to two frames of
reference, one fixed with the laboratory and one rotating with the body, respectively.
In the laboratory frame, the body would appear to be rotating, sweeping out a cone
in a background flow that is otherwise at rest. In the rotating, or body, frame, the
body would appear to be at rest and embedded in some rotating background flow.
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Chwang & Wu (1975) considered a prolate spheroid centred at the origin,

x2

a2
+

y2 + z2

b2
= 1 (a > b), (3.1)

embedded in the free-stream linear flow U(x) = ω (y, −x, 0). The focal length 2c and
eccentricity e of the spheroid are related by

c =
√

a2 − b2 = ea. (3.2)

If we define δ = b/a to be a measure of the spheroid’s slenderness, then the eccentricity

is expressed as e =
√

1 − δ2. Now for x0 on the boundary of this spheroid, the velocity
field u(x) whose solution satisfies

u(x0) = 0,

lim
x→∞

u(x) = U(x),

}
(3.3)

was provided by Chwang & Wu through a distribution of Stokes doublets and point-
source quadrupoles placed on the interior centreline of the spheroid between its foci.
The solution to this boundary-value problem is one in which the body is fixed in a
rotating background flow since U(x) = − ω(ez × x) represents clockwise rotation of
the (x, y)-plane with rate ω where ez = (0, 0, 1) is oriented in the positive z-direction.

We are interested in the velocity solution for the motion induced in a fluid otherwise
at rest by a rigid body rotating around some axis. We would like to construct such
a solution through linear transformations of the appropriate body-frame solutions
built by Chwang & Wu. We will consider the transformations defined by the matrices

Rκ =

⎛
⎜⎝

sin κ 0 − cos κ

0 1 0

cos κ 0 sin κ

⎞
⎟⎠ , Rϑ =

⎛
⎜⎝

cos ϑ(t) − sin ϑ(t) 0

sin ϑ(t) cos ϑ(t) 0

0 0 1

⎞
⎟⎠, (3.4)

where Rκ is a steady clockwise rotation of the (x, z)-plane through an angle κ and Rϑ

is a time-dependent counterclockwise rotation of the (x, y)-plane through an angle
ϑ(t).

Suppose we can construct a velocity field u(x) in the body frame satisfying

u(x0) = 0,

lim
x→∞

u(x) = RT
κ U(Rκ x),

}
(3.5)

where x0 lies on the boundary of spheroid defined in (3.1). Then the change of
variables

x∗(t) = RϑRκ x (3.6)

provides a velocity field in the rotated x∗-coordinate system as

u∗(x∗) =
dx∗

dt

=
d(RϑRκ x)

dt

∣∣∣∣ x=RT
κ RT

ϑ x∗

=

(
ṘϑRκ x + RϑRκ

dx
dt

) ∣∣∣∣ x=RT
κ RT

ϑ x∗

= −U(x∗) + RϑRκ u
(
RT

κ RT
ϑ x∗). (3.7)
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At each time t , this change of variables provides a tilted rotating spheroid whose
boundary is found at

((x sin κ − z cos κ) cos ϑ(t) − y sin ϑ(t))2

a2

+
((x sin κ − z cos κ) sin ϑ(t) + y cos ϑ(t))2 + (x cos κ + z sin κ)2

b2
= 1. (3.8)

Assume we can solve the body-frame problem in (3.5) and let x∗
0 lie on the boundary

of the tilted rotating body in (3.8). Then the construction of a solution which satisfies
the boundary conditions

u∗(x∗
0 ) = −U(x∗

0 ),

lim
x∗→∞

u∗(x∗) = 0,

}
(3.9)

is verified by the velocity field (3.7) where the change of variables (3.5) guarantees
that

lim
x∗→∞

u∗(x∗) = lim
x∗→∞

(
− U(x∗) + RϑRκ u

(
RT

κ RT
ϑ x∗))

= −U(x∗) + Rϑ U
(
RT

ϑ x∗)
= 0. (3.10)

The boundary condition in (3.9) coupled with the Stokes equations describes the
velocity field u∗(x∗) due to the rigid-body motion of a spheroid tilted in the (x∗, z∗)-
plane by an angle κ rotating in the (x∗, y∗)-plane sweeping out a double cone in a
low-Reynolds-number fluid which is otherwise at rest. A more detailed description
of the solution procedure leading to the body-frame boundary conditions of (3.5) is
provided in Appendix B. Thus, obtaining the fluid motion in the laboratory frame
of reference has been reduced to the solution of the auxiliary problem in the body
frame of reference defined by (3.5).

3.2. Solution to an auxiliary problem

Define ex = (1, 0, 0), ey = (0, 1, 0), and ez = (0, 0, 1) to be basis elements of IR3 and
solve Stokes equations with the linear flow

RT
κ U(Rκ x) = ω

⎛
⎜⎝

y sin κ

−x sin κ + z cos κ

−y cos κ

⎞
⎟⎠

= ω(y sin κ ex − x sin κ ey + z cos κ ey − y cos κ ez), (3.11)

past the prolate spheroid in (3.1). Here, we have defined ω ≡ ϑ̇ (the vertical component
of the angular velocity of the body). Let x0 lie on the boundary of this spheroid and,
through the linearity of Stokes equations, construct the velocity field as the sum of
four contributions

u(x) = u1(x) + u2(x) + u3(x) + u4(x), (3.12)

where ui(x0) = 0 for i = 1, 2, 3, 4 and

lim
x→∞

u1(x) = ω y sin κex, (3.13a)

lim
x→∞

u2(x) = −ω x sin κey, (3.13b)

lim
x→∞

u3(x) = ω z cos κey, (3.13c)

lim
x→∞

u4(x) = −ω y cos κez. (3.13d)
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As stated above, the singularity method has been used by Chwang & Wu (1975) to
solve Stokes problems exactly for prolate spheroids embedded in certain linear flows.
In particular, they provide solutions for the boundary-value problems in (3.13a),
(3.13b) and (3.13c) by distributing Stokes doublets quadratically between the foci of
the spheroid and point-source quadrupoles quartically. These solutions are given in
Appendix C. To complete the description for u(x), the singularity distribution for
u4(x) in (3.13d) must be determined. This solution is obtained from u3(x) through
the transformation y ↔ z with details also provided in Appendix C.

Assembling all the pieces results in the Stokes solution

u(x) = RT
κ U(Rκ x)

+ ω sin κ

(∫ c

−c

(c2 − s2)[αuSS(x − s; ex, ey) + γ̃1uR(x − s; ez)] ds

+ β

∫ c

−c

(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

)

+ ω γ̃2 cos κ

∫ c

−c

(c2 − s2) uR(x − s, ex) ds, (3.14)

which satisfies the body-frame problem in (3.5) where RT
κ U(Rκ x) is given in (3.11)

and

γ̃1 =
2 − e2

−2e + (1 + e2) log

(
1 + e

1 − e

) , (3.15a)

γ̃2 =
1 − e2

2e − (1 − e2) log

(
1 + e

1 − e

) , (3.15b)

α =
e2

−2e + (1 + e2) log

(
1 + e

1 − e

) , (3.15c)

β =
1 − e2

4

(
−2e + (1 + e2) log

(
1 + e

1 − e

)) . (3.15d)

The notation in (3.14) is chosen to reflect that the singularities required to solve this
boundary-value problem are precisely the so-called stresslet uSS , the rotlet uR , and a
derivative of the point-source dipole uD . An account of these fundamental solutions
to Stokes equations is provided in Appendix A. The solution in (3.14) and (3.15) to the
auxiliary problem provides the velocity field induced by a prolate spheroid sweeping
out a double cone with angle κ in an infinite viscous fluid through the transformation
of (3.7).

We remark that the solution for u1(x) contains distributions of ∂uD(x, ex)/∂y while
u2(x) contains distributions of ∂uD(x, ey)/∂x. However, by nature of the point-source
dipole, ∂uD(x, ex)/∂y = ∂uD(x, ey)/∂x and only one derivative of the point-source
dipole enters into the solution of (3.5). Further, the integrals in (3.14) can each be ex-
pressed in closed algebraic or logarithmic form providing an exact three-dimensional
time-varying hydrodynamic solution. These expressions are presented explicitly in
Appendix D.
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Figure 2. Particle trajectories for spheroid eccentricies e = 0.95, 0.995, 0.9995 (varying from
top to bottom) for cone angle κ = 30◦ after 20 rod revolutions. The initial particle positions
are provided in (4.4). The corresponding top view is shown to the right. The spheroid rotates
in the counterclockwise direction.

4. Trajectory properties
The particle trajectory x∗ = (x∗(t), y∗(t), z∗(t)) for a tracer moving passively in the

presence of this fluid flow must be computed numerically from the system of non-
autonomous ordinary differential equations

dx∗

dt
= u∗(x∗(t), t), (4.1)

where u∗(x∗) is provided by (3.7) and (3.14). A typical series of trajectories of the
exact solution are depicted in figures 2 and 3 for the cone angles κ = 30◦ and 60◦

and varying spheroid eccentricities e when the rotation rate of sweeping out a cone is
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Figure 3. Particle trajectories for spheroid eccentricies e = 0.95, 0.995, 0.9995 (varying from
top to bottom) for cone angle κ = 60◦ after 20 rod revolutions. The initial particle positions
are provided in (4.4). The corresponding top view is shown to the right.

(throughout this section unless otherwise indicated) ω = 2π. The eccentricities shown
relate to the slenderness δ defined in § 3.1 by

e = 0.95 =⇒ δ ≈ 0.31225,

e = 0.995 =⇒ δ ≈ 0.09987,

e = 0.9995 =⇒ δ ≈ 0.03162,

⎫⎪⎬
⎪⎭ (4.2)

which can be seen qualitatively in the figures. Initially, the upper tip of the rod is
located at (sin κ, 0, cos κ). These same values define a cone radius CR and a cone
height CH

CR = sin κ, CH = cos κ. (4.3)
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x
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Figure 4. Particle trajectories for spheroid eccentricity e = 0.995 and cone angle κ = 60◦ after
20 rod revolutions for the initial positions in (4.6) placed within the cone structure defined
by (4.5). The corresponding top view is shown to the right. The spheroid rotates in the
counterclockwise direction.

For each set of κ and e in figures 2 and 3, trajectories for the initial positions

x∗(0) =

⎧⎪⎨
⎪⎩

(1.5 CR, 0, CH)

(1.25 CR, 0, 0.5 CH)

(CR, 0, 0)

(4.4)

after 20 rod revolutions computed using fourth-order Runge–Kutta with 104 time
steps per rotation on the exact velocity field are shown. The numerical algorithm is
provided by Leiterman (2006) as a Fortran 77 code. Each of the initial conditions in
(4.4) starts outside the cone structure centred about

x2 + y2 = z2 tan2 κ (4.5)

which has a thickness corresponding to the radius of the tilted spheroid at a given
height. Figure 4 shows trajectories for cone angle κ = 60◦ and eccentricity e = 0.995
for the initial positions

x∗(0) =

⎧⎪⎨
⎪⎩

(0, 0, 0.65 CH)

(−0.3 CR, 0, 0.6 CH)

(−0.05 CR, 0, 0.3 CH)

(4.6)

interior to this cone structure. The trajectories in figures 2, 3 and 4 exhibit two
oscillations. A faster fluctuation related to the rotation rate of the spheroid and a
distance dependent slower cycle.

The faster fluctuation is an epicycle which has a polar amplitude and a vertical
fluctuation. We define the polar amplitude of an epicycle to be the difference between
the maximum and minimum

ap(T ) ≡ max
t∈[0,T ]

r⊥(t) − min
t∈[0,T ]

r⊥(t) (4.7)

of the cylindrical radial coordinate

r⊥(t) ≡ |x∗
⊥(t)| =

√
x∗(t)2 + y∗(t)2

over a interval of time [0, T ] in the laboratory frame. The vertical fluctuation is
similarly regarded as the difference between the maximum and minimum of the
vertical component z∗(t) of a trajectory. Polar amplitude and vertical fluctuation
each decrease with increasing eccentricity, or increasing slenderness, which can be
observed in the sequence of graphs in figures 2 and 3. Each epicycle also travels an
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angular distance contributing to the slower oscillation of the trajectory in which a
fluid particle makes a complete revolution about the spheroid. This orbital period is
distance dependent and also decreases with increasing eccentricity.

The period of an epicycle is, in general, not commensurate with spheroid rotation
rate. Figure 5 shows the path of fluid particles after consecutive integer spheroid
revolutions for initial positions which vary from inside to outside the cone at a
fixed height. These paths are shown for cone angles κ = 30◦ and 60◦ and eccentricity
e = 0.995. The trajectory of a particle after three rod revolutions would be the
superposition of each of the three paths shown in figure 5. The spheroid sweeps out
a double cone so that any particle initialized on the spheroid’s surface has a circular
trajectory. The grey region in the figure represents the annulus swept out by the
spheroid at z∗ = z0 which is bounded by such circular trajectories.

4.1. A body-frame generator

We have thus far constructed a three-dimensional time-varying flow field in the
laboratory frame. The resulting trajectories are also three-dimensional and time
varying. Consider the change of variables

x ′ = RT
ϑ x∗, (4.8)

where RT
ϑ is the transpose of the time-varying rotation in (3.4). The velocity field in

the x ′-coordinate system becomes

u′(x ′) =
dx ′

dt

=
d
(
RT

ϑ x∗)
dt

∣∣∣∣ x∗=Rϑ x′

= ṘT
ϑ Rϑ x ′ + RT

ϑ u∗(Rϑ x ′)

= U(x ′) − RT
ϑ U(Rϑ x ′) + Rκ u

(
RT

κ x ′)
= Rκ u

(
RT

κ x ′), (4.9)

upon using the transformation in (3.7) between the laboratory-frame velocity u∗(x∗)
and the body-frame velocity u(x) of the auxiliary problem. By design of the auxiliary
problem boundary conditions in (3.5), it is found that

u′(x ′
0) = 0,

lim
x′→∞

u′(x ′) = U(x ′),

}
(4.10)

where x ′
0 lies on the tilted spheroid

(x ′ sin κ − z′ cos κ)2

a2
+

(y ′)2 + (x ′ sin κ + z′ cos κ)2

b2
= 1. (4.11)

The x ′-coordinate spheroid is determined by applying RT
ϑ to the tilted rotating

spheroid in (3.8). The result is a steady velocity field for a tilted spheroid embedded in
the background rotation U(x ′) = ω (y ′, −x ′, 0). This body-frame solution differs from
the body-frame solution of the auxiliary problem (3.5). In the auxiliary problem, the
spheroid is not tilted, but rather lying on an axis embedded in another rotating flow,
namely, RT

κ U(Rκ x) defined by (3.11).
Through the transformation in (4.8), every trajectory in the laboratory frame can

be viewed in this alternative body frame. Hence, trajectories x ′ can be viewed as
generators of the laboratory-frame motion through an application of Rϑ . Figure 6
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Figure 5. A top view of particle trajectories over consecutive spheroid revolutions for initial
positions x0 which vary from inside to outside the cone where the horizontal axis is x∗ and
the vertical axis is y∗. In each plot, y0 = 0 and z0 = 0.65 CH. The left-hand column shows
trajectories for cone angle κ = 30◦ while the right-hand column shows those for κ = 60◦. The
paths are shown for spheroid revolutions 0 to 1, 1 to 2 and 2 to 3 (top to bottom). The grey
region is the annulus swept out by the spheroid with eccentricity e = 0.995 at z∗ = z0. It is
bounded by circular trajectories produced from particles which are initialized on the rotating
body.

shows a collection of trajectories in the laboratory frame with initial conditions
sampled from figure 5 and the corresponding transformed trajectories which emanate
from the steady velocity field in (4.9). The same collection is shown from different
perspectives. The body-frame trajectories are periodic orbits whose periods depend on
initial position, cone angle and eccentricity. Each closed orbit generates an epicyclic
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(a) (b)

(c) (d )

(e) ( f )

Figure 6. The left-hand column shows a collection of trajectories in the laboratory frame
with initial conditions sampled from figure 5 for cone angle κ = 60◦ and eccentricity e = 0.995.
The corresponding body-frame trajectories formulated by (4.8) are shown on the right. This
collection is given over perspectives which vary from a side to a top view after 30 spheroid
revolutions. Circular trajectories in the laboratory frame resulting from particles initialized on
the spheroid are seen as single points in this body frame. One orbit of a body-frame trajectory
generates the epicycles seen in a laboratory frame trajectory.

trajectory when seen in the laboratory frame. Trajectory properties, such as polar
amplitude and vertical fluctuation, can be measured in either the laboratory or this
body frame of reference. We remark that, in general, the difference between the
maximum and minimum of the cylindrical radial coordinates of a generator will
correspond to the amplitude (of the (x, y)-projection) of an epicycle, i.e.

ae ≡ max
T

ap(T ), (4.12)

according to the definition (4.7) of polar amplitude.
Next, examine the generators in figure 6 more closely. In the perspective provided

by figure 6(a), there is a transition between the orange and the red trajectories in
which the orange trajectory curls up while the red one curls down. This transition
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Figure 7. Body-frame orbits which climb and wrap the spheroid for cone angle κ = 60◦,
eccentricity e = 0.995 and initial position (x0 CR, 0, 0.65 CH) over two perspectives. The values
of x0 are provided in the caption of figure 8 and vary between −0.3 CR and −0.2 CR. The
insets show two different perspectives of the same orbits but with the body omitted, (a) from
a generic viewpoint to the side and (b) from a top viewpoint along the z-axis.
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x0 = –0.265

x0 = –0.2634

x0 = –0.26348

x0 = –0.2635

x0 = –0.263495

x0 = –0.26349587

x0 = –0.26349584

Figure 8. The number of spheroid revolutions required for the body-frame orbits in figure 7
(related by colour) to close as a log–log plot against the difference in initial position x0 between
a given trajectory and that of the trajectory from x0 = −0.26349584CR which climbs farthest
up the rod. Trajectories which are initialized to the left of x0 = −0.26349584CR have orbits
which wrap around the backside of the spheroid hence containing it whereas those that are
initialized to the right of this value have orbits which wrap the frontside of the spheroid and
do not enclose the body.

is illustrated more clearly in figure 7 which includes the position of the spheroid in
this body frame of reference. The transition between the curling up and curling down
includes orbits in which a particle decides to route around the spheroid enclosing
it or pass in front of it. This decision is dictated by a particle’s initial position.
Figure 7 shows the same body-frame trajectories over varying perspectives. The
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intermediate trajectory between hugging the front of the body or wrapping around
it must be one which climbs all the way to the tip of the spheroid (and descends
on the other side). This trajectory is not depicted in figure 7. The initial position
of the trajectory which climbs the furthest to the tip is x0 = − 0.26349584 CR. This
orbit closes after 385.678 spheroid revolutions, whereas the trajectory which has an
initial position of x0 = −0.26348 CR closes after just 15.179 revolutions. The period
of each of the trajectories in figure 7 is plotted in figure 8. The reason for the large
increase in orbital period over small changes in initial position is that the initial
position determines how close the particle approaches to the surface of the spheroid.
This surface, because of the no-slip boundary condition on the velocity field, can
be viewed as a manifold of fixed points, and so orbits that approach any of its
neighbourhoods must have small velocities, thereby taking a long time to leave the
neighbourhood and hence resulting in a large contribution to the time period. This
mechanism for time period increase is reminiscent of that observed in dynamical
systems theory for periodic orbits approaching a hyperbolic fixed point, where such
a phenomenon plays a significant role in creating the conditions for chaotic particle
trajectories (for three-dimensional Stokes flow-specific examples, see e.g. Bajer &
Moffatt 1990; Stone, Nadim & Strogatz 1991; Kroujiline & Stone 1999). However,
because of the degeneracy of the entire spheroid surface being a set of fixed points,
there are significant differences with respect to the usual hyperbolic case treated in the
literature. In particular, the numerical evidence in figure 7 shows that chaotic motion
is not likely under the boundary conditions we have examined, and the entire fluid
space, viewed in the body reference frame, seems to be spanned solely by periodic
orbits. It may be of interest to classify the fluid particle motion for this exact solution
of three-dimensional Stokes flows (as opposed to approximate ones, such as those
for the fluid droplets considered in studies mentioned above, where the droplet’s free-
surface deformation away from spherical is ignored). However, a thorough study of
the fluid particle kinematics for the present set-up, and, in particular, of the role that
its discrete symmetries play in the complete integrability of the particle trajectories,
is beyond the scope of this paper and will be presented elsewhere.

In what follows, we are going to examine four trajectory properties of this flow:
polar amplitude, angle travelled, vertical fluctuation and arclength. We chose these
properties having experimental situations in mind (Jing 2006), where these quantities
are easy to observe and measure. Moreover, such quantities are likely to play a role in
the biological implication of our study; they can be used to quantify the amount of
fluid stirring caused by precessing rods, which in turn may affect the distribution of
tracers in the fluid. Accordingly, we document each of these properties on trajectories
in the laboratory frame of reference, which allows for direct observation without the
need for moving instrumentation such as cameras and microscopes; the trajectories
are then provided by the system of ordinary differential equations in (4.1).

4.2. Polar amplitude

As defined in (4.7), polar amplitude is regarded as the amplitude of the epicycles
projected on the z = 0 plane. It is clear that each trajectory in this flow is determined
by a cone angle κ , an eccentricity e, and an initial position (x0, y0, z0). Trajectories
are further defined by the integration domain which is some interval in time. Recall
that the spheroid is initially oriented in the y = 0 plane with its upper tip in the first
quadrant.

Figure 9 shows a collection of colour density plots of polar amplitude. The polar
amplitude shown is measured on the trajectories which result from a single spheroid
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Figure 9. Colour density plots of polar amplitude measured on trajectories which result from
a single spheroid revolution initialized at the position (x0, 0, z0). Colour is amplitude while the
horizontal axis is x0 (measured in cone radius CR) and the vertical axis is z0 (measured in
cone height CH). The plane y∗ = 0 intersects the spheroid which is seen as the centre black
ellipsoid. Since a fluid particle cannot be initialized within the body, there are no trajectories
from which amplitude can be measured in this region. The left-hand column shows amplitude
for cone angle κ = 30◦ while the right-hand column shows that for κ = 60◦. Plots are also
shown over varying eccentricities e = 0.95, 0.995, 0.9995 (from top to bottom).

revolution, or more precisely, on trajectories over times 0 � t < 2π. For each of the
plots in this figure, y0 = 0. Colour represents amplitude while the horizontal axis is x0

and the vertical axis is z0. The set of initial conditions (x0, 0, z0) samples a plane which
intersects the spheroid. Hence, in this set there are values of x0 and z0 for which polar
amplitude cannot be measured because they reside within the body. These regions
can be seen as the black ellipsoids in figure 9.

Observe the asymmetry of polar amplitude in the upper plane. Although not
illustrated in figure 9, polar amplitude is symmetric about the origin. The symmetry
about the origin is expected, owing to the nature of the free-space precession of a
body about its midpoint. To explain the asymmetry in the upper plane, consider the
evolution of fluid particles. In figure 10, a circle of initial positions is placed in the
θ = π plane. The spheroid revolves and when a particle intersects the θ = 0 plane on
integral revolutions, it is plotted. The result is the curved shaped near the upper tip of
the rod on the right. The evolution of this circle to the crescent on integral spheroid
revolutions indicates how the region of large amplitude on the left of figure 9 evolves
to the large-amplitude region on the right (regions red-shifted in colour). In addition,
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Figure 10. Integer time Poincaré section. A circle of initial positions is placed in the θ = π
plane shown on the left. The spheroid revolves and when a particle intersects the θ = 0 plane
on integral revolutions, it is plotted. This intersection of the discretized circle shown occurs
on integer revolutions which vary from 1 to 300. The result is the crescent on the right. The
evolution of this circle to the crescent explains the asymmetry of polar amplitude in figure 9.
Corresponding initial positions on the circle and the crescent result in the same trajectory.

x0 = 0 CR x0 = 0.1 CR x0 = 0.2 CR

(a)

(b)

Figure 11. (a) A sample of initial conditions centred on three crosses (left to right) about
x0 = 0 on a colour density plot of polar amplitude. This is a magnified image of figure 9
(a) where κ = 30◦ and e = 0.95. (b) The corresponding (left to right) trajectories after one
spheroid revolution from which polar amplitude was measured.

fluid particles initialized at the corresponding position on the crescent have the
same trajectory as its counterpart which was initialized on the circle. Next, examine
the discontinuity about x0 = 0. To explain the sharp contrast in colour, figure 11
shows trajectories for three initial positions about this zero polar amplitude strip.
The trajectories presented result from a single spheroid revolution. Near-circular
projected trajectories have near-zero polar amplitude. Figure 11 demonstrates a
narrow region about x0 = 0 of initial positions for which trajectories nearly close after
one spheroid revolution.

4.3. Angle travelled

Another feature noted of the particle trajectories in this flow is a distance-dependent
orbital period. The angle travelled by a particle per spheroid revolution contributes to
the time it takes for that particle to make a complete revolution about the spheroid.

Figure 12 shows a collection of greyscale density plots of the angle travelled. This
angle is measured on the trajectories which result from a single spheroid revolution
as done for the colour density plots of polar amplitude in figure 9. Again, for each of
the plots in this figure, y0 = 0. Further, the set of initial conditions (x0, 0, z0) samples a
plane which intersects the spheroid, and these regions are seen as the black ellipsoids
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Figure 12. Greyscale density plots of the angle travelled by trajectories which result from
a single spheroid revolution initialized at the position (x0, 0, z0). The greyscale is the angle
travelled (measure in degrees) while the horizontal axis is x0 (measured in cone radius CR) and
the vertical axis is z0 (measured in cone height CH). The left-hand column shows the angle
travelled for the cone angle κ = 30◦ while the right-hand column shows that for κ = 60◦. Plots
are also shown for eccentricities which vary over e = 0.95, 0.995, 0.9995 (from top to bottom).
The plane y∗ = 0 intersects the spheroid which is seen as the centre ellipsoid from which no
fluid particle can be initialized.

in figure 12. As with polar amplitude, the angle travelled is symmetric about the
origin.

Observe the discontinuity near x0 = 0. To explain the sharp contrast in the greyscale,
figure 13 shows trajectories for four initial positions about this discontinuity where
the centre and right-hand crosses of the row mark the same initial conditions as the
left-hand (red) and center (green) crosses, respectively, in figure 11. The change in
the greyscale of angle travelled, from dark grey to off white, corresponds to a jump
of 180◦. As the initial condition of a trajectory moves to x0 = 0 from the left, the
trajectory begins to enclose the origin. The result is a jump in the measure of the
angle travelled by precisely 180◦. The row of crosses are initial conditions for the first
three trajectories (left to right) shown in figure 13(b). This enclosure of the origin,
resulting in a discontinuity of the greyscale, is seen in the evolution of these three
trajectories. The greyscale density plots of figure 12 also demonstrate the existence
of initial conditions for which resulting trajectories travel further than 360◦ on a
single spheroid revolution. A sample of such a trajectory is given in figure 13(b, far
right). Regions for such behaviour are found for initial positions deep within the cone
structure and also for those near the top of the cone structure at about half the cone
radius.
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(a)

(b)

x x x
x

r0 = –0.1 CR r0 = 0 CR r0 = 0.1 CR r0 = 0.05 CR

Figure 13. (a) A sample of initial conditions centred on crosses in a row (left to right) about
x0 = 0 and one at x0 = 0.05 CR deep within the cone structure on a greyscale density plot of
the angle travelled. This is a magnified image of figure 12(a) where κ = 30◦ and e = 0.95. (b)
The corresponding trajectories after one spheroid revolution from which the angle travelled
was measured. The first three are generated by the initial conditions in the top row of crosses
(left to right) while the bottom cross is the far-right trajectory. The last two crosses of the top
row are the same initial conditions as the red (left) and green (middle) crosses in figure 11.

4.4. Vertical fluctuation

Particle trajectories (x∗(t), y∗(t), z∗(t)) exhibit three-dimensional structure. The vertical
fluctuation of a trajectory is regarded as the difference between the maximum
and minimum of the vertical component z∗(t). Figure 14 shows a collection
of greyscale density plots of the vertical fluctuation. This vertical fluctuation is
measured on trajectories which result from a single spheroid revolution as done for
the previous density plots. Again, the vertical fluctuation is symmetric about the
origin which is illustrated in this figure. Figure 14 demonstrates that the areas of
largest vertical fluctuation are near z0 = 0 and about the cone structure edges at
(x0, z0) = (± CR, ± CH).

4.5. Arclength

Although the arclength of a trajectory per spheroid revolution is not an indicator
of orbital period, it does provide information about the structure of particle paths.
For cone angle κ = 30◦ and eccentricity e = 0.95, figure 15 displays greyscale density
plots of the arclength of trajectories after a single spheroid revolution. The left-hand
plot results from trajectories sampled over initial position (x0, 0, z0). This set could
be recast as (r0 cos θ0, r0 sin θ0, z0) for θ0 = 0◦. Figure 15 shows greyscale density plots
over the set of θ0 = 0◦, 30◦, 60◦, 90◦. Recall that the spheroid starts in the y∗ = 0 plane
with its upper tip in the first quadrant. Initiating a particle at varying θ0 is equivalent
to viewing trajectories initiated at different times since time is measured in spheroid
revolutions.

5. Flow properties
5.1. Speed

Figure 16 displays a collection of greyscale density plots of the magnitude of the
three-dimensional velocity field, or the speed, measured at (x∗, 0, z∗). The greyscale
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Figure 14. Greyscale density plots of the vertical fluctuation on trajectories which result from
a single spheroid revolution initialized at the position (x0, 0, z0). The greyscale is the vertical
fluctuation while the horizontal axis is x0 (measured in cone radius CR) and the vertical axis
is z0 (measured in cone height CH). The left-hand column shows vertical fluctuation for cone
angle κ = 30◦ while the right-hand column shows that for κ = 30◦. Plots are also shown over
eccentricities which vary over e = 0.95, 0.995, 0.9995 (from top to bottom). Again, the plane
y∗ = 0 intersects the spheroid which is seen as the centre ellipsoid from which no fluid particle
can be initialized.
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Figure 15. Greyscale density plots of the arclength of trajectories which result from a
single spheroid revolution initialized at the position (r0 cos θ0, r0 sin θ0, z0) as a function of r0

(horizontal axis measured in CR) and z0 (vertical axis measured in CH) for θ0 = 0◦, 30◦, 60◦, 90◦

(left to right) when the cone angle κ = 30◦ and eccentricity e = 0.95. By varying θ0 and recalling
that time is measured in spheroid revolutions, this figure represents a times series of arclength.
As explained in the previous density plots, each fixed θ0-plane intersects the spheroid. This is
observed as the central black region from which no fluid particle can be initialized and, hence,
from which arclength cannot be measured.

represents speed while the horizontal axis is x∗ and the vertical axis is z∗. The set
of points (x∗, 0, z∗) samples a plane which intersects the spheroid. Hence, in this set,
there are values of x∗ and z∗ for which speed is not measured because these points
reside within the body and outside the fluid domain. These regions are the black
ellipsoids in figure 16. As expected, the magnitude of the velocity field is largest near
the tips of the spheroid.

5.2. Cylindrical velocity components

The velocity field can be cast into a cylindrical coordinate system

x∗ = r cos θ, y∗ = r sin θ, z∗ = z, (5.1)

resulting in a radial velocity ur , azimuthal velocity uθ and the vertical velocity of
the Cartesian system uz. Figures 17(a)–17(d) show the particle velocity, in cylindrical
coordinates, as a function of time for cone angles κ = 30◦ and 60◦ and eccentricities
e = 0.95 and 0.995. The corresponding particle trajectories for these velocities are
shown in figures 2(a–d) and 3(a–d). Figure 17(e, f ) displays particle speed versus
time for the velocities shown in figure 17(a–d).

Figure 17 demonstrates the existence of initial conditions for which local extrema
in the azimuthal and vertical velocity emerge over varying cone angle and eccentricity.
In figure 17(a–d), the solid and dotted curves, at fixed eccentricity but varying cone
angle, have different numbers of local extrema per cycle. The emergence of local
extrema in particle speed is also observed as cone angle and eccentricity varies. This
is clear from figure 17(e, f ). Figure 17(e) has a fixed cone angle while the solid curves
across figures 17(e) and 17(f ) have a fixed eccentricity.

It is worth noting that at the centre of the maximal regions in speed, the body and
particle are aligned in a particular way, namely, the angular positions of the particle
and spheroid tip (the end in the half-space of particle initialization) are the same.
Thus, at this time, the particle and spheroid are said to be aligned. During alignment,
speed can take a maximal value or it can assume a local minimum centred between
maximal values. This is demonstrated in figure 17(e). Moreover, at the centre of the
minimal regions in speed, the body and particle are said to be anti-aligned. That
is, the angular positions of the particle and spheroid tip differ by 180◦. Much like
alignment, anti-alignment may occur at either local or global minima in speed which
may or may not be surrounded by local extrema. This is observed in the solid curves
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Figure 16. Greyscale density plots of the magnitude of the velocity field, or the speed,
measured at the points (x∗, 0, z∗). The greyscale is speed while the horizontal axis is x∗

(measured in cone radius CR) and the vertical axis is z∗ (measured in cone height CH). The
left-hand column shows speed for cone angle κ = 30◦ while the right-hand column shows that
for κ = 60◦. Plots are also shown over varying eccentricities e = 0.95, 0.995, 0.9995 (from top
to bottom). The plane y∗ = 0 intersects the spheroid which is seen as the centre ellipsoid. No
fluid particles reside in this region and, hence, speed is not measured here.
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Figure 17. Cylindrical velocity components (a–d) and the associated speed (e, f ) as a function
of time (measured in spheroid revolutions) evaluated along the trajectory determined by the
initial condition x∗(0) = (1.25 CR, 0, 0.5 CH) for eccentricity e = 0.95 (a, b) and e = 0.995 (c, d).
These are the central trajectories in figures 2(a–d) and 3(a–d). Each feature is provided for cone
angles κ = 30◦ (left-hand column) and κ = 60◦ (right-hand column) over 6 spheroid revolutions.
The eccentricity of the associated speeds in (e) and (f ) are 0.95 (solid line) and 0.995 (broken
line).

across figures 17(e) and 17(f ). The structure in velocity and speed as the particle
and spheroid continually meet and pass dictates the epicyclic nature of a particle
trajectory.

6. Far-field behaviour
It is natural to ask how the velocity field decays as |x| → ∞. By expanding (3.14) in

1/|x| � 1, it is found that

u(x) = −U(x) +
4c3

3
[ω sin κ(α uSS(x; ex, ey) + γ̃1 uR(x; ez))

+ γ̃2(ω cos κ + σ̇ ) uR(x; ex)] + O

(
1

|x|3

)
(6.1)

where σ̇ is the rate of an added rotation about the spheroid’s major axis as it sweeps
out a cone. The exact velocity field induced by this additional rotation is discussed
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and constructed in the subsequent section. From the transformation in (3.7) which
describes the velocity field in the laboratory frame, we obtain

u∗(x∗) =
4c3

3
RϑRκ

[
ω sin κ

(
α uSS

(
RT

κ RT
ϑ x∗; ex, ey

)
+ γ̃1 uR

(
RT

κ RT
ϑ x∗; ez

))

+ γ̃2(ω cos κ + σ̇ ) uR

(
RT

κ RT
ϑ x∗; ex

)]
+ O

(
1

|x∗|3

)

=
4c3

3
(α ω sin κ uSS(x∗; e∗

x(t), e∗
y(t)) + γ̃1 ω cos κ uR(x∗; e∗

z (t))

+ γ̃2 (ω cos κ + σ̇ ) uR(x∗; e∗
x(t))), (6.2)

at leading order.
Recall that the transformation x∗(t) = RϑRκ x moves from a fixed reference frame

defined in x where the spheroid is lying on the x-axis embedded in a flow to the
laboratory frame defined in x∗ where the spheroid is tilted sweeping out a cone in
a fluid otherwise at rest. If ex, ey, ez represent the basis vectors in the x-coordinate
system then the columns of RϑRκ represent the basis vectors in the x∗-coordinate
system. Hence, the singularity strengths in (6.2) are

e∗
x(t) = RϑRκ ex =

⎛
⎜⎝

sin κ cos ϑ(t)

sin κ sin ϑ(t)

cos κ

⎞
⎟⎠ , e∗

y(t) = RϑRκ ey =

⎛
⎜⎝

− sin ϑ(t)

cos ϑ(t)

0

⎞
⎟⎠ ,

e∗
z (t) = RϑRκ ey =

⎛
⎜⎝

− cos κ cos ϑ(t)

− cos κ sin ϑ(t)

sin κ

⎞
⎟⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)

providing e∗
x(t) is aligned along the spheroid in the x∗ system while e∗

y(t) and e∗
z (t)

replace ey and ez, respectively. The time-dependence in the system of ordinary
differential equations governing the far-field motion (6.2) enters through the strengths
of the singularities.

In its entirety, at leading order, fluid particle trajectories x∗(t) = (x∗(t), y∗(t), z∗(t))
in the far field are found by imposing the initial condition

x∗(0) = x∗
0 (6.4)

and solving the non-autonomous system

dx∗

dt
=

4c3

3

(
γ̃1ω sin κ(−y∗ sin κ − z∗ sin ϑ(t) cos κ)

|x∗|3

+
γ̃2(ω cos κ + σ̇ )(−y∗ cos κ + z∗ sin ϑ(t) sin κ))

|x∗|3

× 3 ωα sin κ(−x∗ sin ϑ(t) + y∗ cos ϑ(t))(sin κ(x∗ cos ϑ(t) + y∗ sin ϑ(t)) + z∗ cos κ)x∗

|x∗|5

)

dy∗

dt
=

4c3

3

(
γ̃1ω sin κ(x∗ sin κ + z∗ cos ϑ(t) cos κ)

|x∗|3

+
γ̃2(ω cos κ + σ̇ )(x∗ cos κ − z∗ cos ϑ(t) sin κ))

|x∗|3

× 3 ωα sin κ(−x∗ sin ϑ(t) + y∗ cos ϑ(t))(sin κ(x∗ cos ϑ(t) + y∗ sin ϑ(t)) + z∗ cos κ)y∗

|x∗|5

)
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Figure 18. Speed as a function of x∗ for the exact velocity field when cone angle κ = 30◦,
eccentricity e = 0.95, y∗ = 0, and z∗ = CH compared to the speed of the far-field velocity field
in (6.2). (a) Comparison near the cone structure; (b) log–log plot of speed for larger x∗. The
log–log plot demonstrates the |x∗| −2 scaling behaviour.

dz∗

dt
=

4c3

3

(
γ̃1ω sin κ cos κ(x∗ sin ϑ(t) − y∗ cos ϑ(t)

|x∗|3

+
γ̃2(ω cos κ + σ̇ ) sin κ(−x∗ sin ϑ(t) + y∗ cos ϑ(t)))

|x∗|3

× 3 ωα sin κ(−x∗ sin ϑ(t) + y∗ cos ϑ(t))(sin κ(x∗ cos ϑ(t)+y∗ sin ϑ(t)) + z∗ cos κ)z∗

|x∗|5

)
.

It is of interest to examine

1

2

d(|x∗|2)
dt

= x∗ · dx∗

dt
. (6.5)

By design, the rotlet singularity offers no contribution to x∗ · dx∗/dt . However, the
stresslet singularity in (6.2) makes the rate of change of |x∗|2 in the far field

d(|x∗|2)
dt

=
8c3 ω α sin κ (e∗

y · x∗)(e∗
z · x∗)

3 |x∗|3 (6.6)

and non-zero at leading order.

6.1. Trajectory property scaling

The velocity field decays like |x∗| −2 in the far field as provided by singularities
at leading order in (6.2). The magnitude of the three-dimensional velocity field is
measured in the laboratory frame for y∗ = 0 and z∗ = CH as x∗ increases (figure 18).
This figure shows speed for the exact solution and the far-field expansion near the
cone structure in addition to a log–log plot of the ensuring speed for larger x∗ as
compared to a |x∗| −2 scaling.

The far-field system does not readily predict the scaling of trajectory properties
analytically. Figure 19 provides a numerical sample of the scaling of polar amplitude,
the angle travelled, vertical fluctuation, and arclength when the cone angle κ = 30◦

and eccentricity e = 0.95. The properties in these figures are measured on trajectories
after a single spheroid revolution for y0 = 0 and z0 = CH as x∗ increases. For arbitrary
cone angle κ and spheroid eccentricity e, it can be numerically shown that for |x∗| � 1,

Polar amplitude ∼ |x∗| −2, Angle travelled ∼ |x∗| −3, (6.7)

Vertical fluctuation ∼ |x∗| −2, Arclength ∼ |x∗| −2. (6.8)
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Figure 19. Trajectory properties as a function of initial cylindrical radius r0 =
√

x2
0 + y2

0 for

the exact velocity field when the cone angle κ = 30◦, eccentricity e = 0.95, y0 = 0, and z0 = CH
compared to those of the far-field velocity field in (6.2). The left-hand column shows the
comparison near the cone structure while the right-hand column shows a log–log plot of these
properties for larger r0. The log–log plot includes the scaling behaviour of each property as a
function of r0. (a) Polar amplitude; (b) angle travelled; (c) vertical fluctuation; (d) arclength.

The |x∗| −3 decay of angle travelled is consistent with the |x∗| −2 decay of arclength by
definition of arclength as radius multiplied by angle.

6.2. Far-field small cone angle κ limit

Consider an expansion of the far-field velocity field in the laboratory frame in (6.2)
for small cone angle κ . Retaining only O(κ) terms yields
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dx∗

dt
= v0(x∗) + κ v1(x∗, t)

=
4c3γ̃2 ω

3|x∗|3

⎛
⎜⎝

−y∗

x∗

0

⎞
⎟⎠+ κ

⎡
⎢⎣4c3(γ̃2 − γ̃1) ω

3|x∗|3

⎛
⎜⎝

z∗ sin ϑ(t)

−z∗ cos ϑ(t)

−x∗ sin ϑ(t) + y∗ cos ϑ(t)

⎞
⎟⎠

+
4c3α ω

|x∗|5 (−x∗ sin ϑ(t) + y∗ cos ϑ(t)) z∗

⎛
⎜⎝

x∗

y∗

z∗

⎞
⎟⎠
⎤
⎥⎦ (6.9)

for |x| � 1. At leading order, the far-field velocity field is a single rotlet oriented
in the positive z∗-direction, as might be expected. Transforming to spherical polar
coordinates,

x∗ = r cos θ sin φ, y∗ = r sin θ sin φ, z∗ = r cos φ, (6.10)

with 0 � φ < π and 0 � θ < 2π, the system in (6.9) is rewritten as

dr

dt
= κ

2c3α ω

r2
sin 2φ sin(θ − ϑ(t)),

dφ

dt
= κ

4c3(γ̃1 − γ̃2) ω

3r2
sin(θ − ϑ(t)),

dθ

dt
=

4c3γ̃2 ω

3r2
sin φ + κ

4c3(γ̃1 − γ̃2) ω

3r2
cos φ cos(θ − ϑ(t)).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.11)

Notice that the body frame of reference described in (4.9) is obtained through the
transformation ϕ = θ −ϑ(t) which is readily available in (6.11). In this reference frame,
the averaging theorem (Sanders & Verhulst 1985) can be invoked to show that r and
φ stay within O(κ) of their initial values for (long) times of order O(1/κ). Notice
further that an invariant

r = ρ(φ) (6.12)

exists for this system. In fact,

dr

dt
=

dρ

dφ

dφ

dt
, (6.13)

and by inspection

dρ

dφ
=

3α

2(γ̃1 − γ̃2)
sin 2φ, (6.14)

so that

r = ρ(φ) =
3α

4(γ̃2 − γ̃1)
cos 2φ + C. (6.15)

Rotational symmetry with respect to ϕ generates a surface when the constant of

integration C is picked by the initial conditions r0 and φ0.
The invariant surface provides a reduction of the system by elimination of, say, φ

through

cos 2φ =
4(γ̃2 − γ̃1)

3α
(r − C). (6.16)
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Away from initial conditions within a neighbourhood of order κ around φ0 = 0, π/2,
the sign of sin 2φ is fixed and thus, for ϑ(t) = ω t , the far-field small cone angle reduces
to the (r , ϕ) system

dr

dt
= κ ω

2c3α

r2
S(r) C(r) sin ϕ, (6.17a)

dϕ

dt
= ω

(
−1 +

4c3γ̃2

3r2
S(r) + κ

4c3(γ̃2 − γ̃1)

3r2
C(r) cos ϕ

)
, (6.17b)

with the notation

S(r) ≡

√
1

2

(
1 − 4(γ̃2 − γ̃1)

3α
(r − C)

)
, C(r) ≡

√
1

2

(
1 + α

4(γ̃2 − γ̃1)

3α
(r − C)

)
.

This system can be reduced by quadratures with an appropriate integrating factor.
The function

K =

∫ r
(

−3s2 + 4c3γ̃2 S(s)

6c3α S(s) C(s)
exp

(∫ s 2(γ̃2 − γ̃1)

3 α S(u)
du

))
ds

+ κ cos ϕ exp

(∫ s 2(γ̃2 − γ̃1)

3 α S(s)
ds

)

is invariant along solutions of system (6.18). This invariant evaluated at ϕ = 0, π
(where dr/dϕ = 0 according to system (6.18)) yields an approximate expression for
the (projected) epicycle amplitude as a function of the initial conditions r0 and φ0,

ae � κ
12c3α (S(r0))

2C(r0)

3r2
0 − 4c3γ̃2 S(r0)

, (6.18)

which shows explicitly the far field decay as 1/r2
0 by retaining the leading order of

this expression for large r0.

6.3. Far-field cylindrical radial limit

The limit of the exact velocity field as the cylindrical radius
√

x∗2 + y∗2 → ∞ in the
laboratory frame provides

dx∗

dt
=

4ωc3

3

(
3 α sin2 κ (x∗ cos ϑ + y∗ sin ϑ)2(−x∗ sin ϑ + y ∗ cos ϑ)

(x∗2 + y∗2)5/2

− y∗ (γ̃1 sin2 κ + γ̃2 cos2 κ)

(x∗2 + y∗2)3/2

)
,

dy∗

dt
=

4ωc3

3

(
3 α sin2 κ (x∗ cos ϑ + y∗ sin ϑ)(−x∗ sin ϑ + y ∗ cos ϑ)2

(x∗2 + y∗2)5/2

+
x∗ (γ̃1 sin2 κ + γ̃2 cos2 κ)

(x∗2 + y∗2)3/2

)
,

dz∗

dt
=

4ωc3

3

(
(γ̃1 − γ̃2) sin κ cos κ (x∗ sin ϑ − y∗ cos ϑ)

(x∗2 + y∗2)3/2

)
.

Transforming to cylindrical coordinates

x∗ = r cos θ, y∗ = r sin θ, z∗ = z,
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this system is rewritten as

dr

dt
= 2 ω c3 α sin2 κ

sin 2ϕ

r2
, (6.19)

dϕ

dt
=

4ωc3

3

(
−1 +

γ̃1 sin2 κ + γ̃2 cos2 κ

r2

)
, (6.20)

dz

dt
=

2 ω c3

3
(γ̃1 − γ̃2) sin κ cos κ

sin ϕ

r2
, (6.21)

through the change of variables ϕ = θ − ϑ(t). Notice the invariant r = r(ϕ) where by
inspection

dr

dϕ
=

3α sin2 κ sin 2ϕ

2(−r2 + γ̃1 sin2 κ + γ̃2 cos2 κ)
. (6.22)

This separable ordinary differential equation provides the invariant

2r3

3
− 2r (γ̃1 sin2 κ + γ̃2 cos2 κ) =

3 α sin2 κ cos 2ϕ

2
+ C. (6.23)

By using the fact that for sufficiently large r the left-hand side of (6.23) is
monotonic increasing, the maximal excursion that the cylindrical radius can experience
during the evolution governed by system (6.19)–(6.21) is determined by the maximal
variation in ϕ of the right-hand side. Thus, for large initial radial conditions r0, by
a simple application of the mean value theorem, the projected epicycle amplitude is
approximately

ae � 3 α sin2 κ

2r2
0

. (6.24)

7. An additional rotation
We have examined the motion of a body sweeping out a cone defined by the

boundary conditions in (3.9). This motion has a ‘dark side of the moon’ feature
for which the surface of the spheroid interior to the cone swept by its long axis
always remains on the interior. This constraint can be removed by considering an
additional rotation about the major axis as it sweeps out a cone. It turns out that
practical experimental set-ups, for which the present free precessing spheroid is an
idealization, can induce this extra rotation owing to a combination of external forces
(such as friction from the suspension point) and it is relevant to include its effects.
This additional rotation can be imposed in the body frame of reference, and the
velocity field in the laboratory frame can be constructed with the transformations of
§ 3.1.

Recall the boundary conditions for the auxiliary problem defined by (3.5). The
far-field condition can be expressed as

RT
κ U(Rκ x) = −ω sin κ(ez × x) − ω cos κ(ex × x) (7.1)

so that the velocity fields

v1(x) = −ω sin κ

(
(ez × x) −

∫ c

−c

(c2 − s2)[αuSS(x − s; ex, ey) + γ̃1uR(x − s; ez)] ds

+ β

∫ c

−c

(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

)
, (7.2a)
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v2(x) = −ω cos κ

(
(ex × x) − γ̃2

∫ c

−c

(c2 − s2) uR(x − s, ex) ds

)
, (7.2b)

satisfy Stokes equations with boundary conditions

v1(x0) = 0,

lim
x→∞

v1(x) = −ω sin κ(ez × x),

}
(7.3a)

v2(x0) = 0,

lim
x→∞

v2(x) = −ω cos κ(ex × x),

}
(7.3b)

where x0 lies on the boundary of the spheroid in the body frame of reference given
in (3.1).

Consider an additional rotation of rate σ̇ on the spheroid about its major axis.
The resulting laboratory-frame motion is constructed through a transformation of
the solution to the auxiliary boundary-value problem

v(x0) = V (x0),

= σ̇ (ex × x0),

lim
x→∞

v(x) = RT
κ U(Rκ x).

⎫⎪⎬
⎪⎭ (7.4)

The solution to Stokes equations which satisfies

u(x0) = 0,

lim
x→∞

u(x) = RT
κ U(Rκ x),

}
(7.5)

has been determined in (3.14). By examining the velocity field v2 in (7.2b) and (7.3b),
it is clear that

ṽ(x) = σ̇ γ̃2

∫ c

−c

(c2 − s2) uR(x − s, ex) ds (7.6)

satisfies

ṽ(x0) = σ̇ (ex × x0),

lim
x→∞

ṽ(x) = 0,

}
(7.7)

and, accordingly,

v(x) = ṽ(x) + u(x)

= −ω sin κ(ez × x) − ω sin κ(ex × x)

+ ω sin κ

∫ c

−c

(c2 − s2)[αuSS(x − s; ex, ey) + γ̃1uR(x − s; ez)] ds

+ ω β cos κ

∫ c

−c

(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

+ (ω cos κ + σ̇ ) γ̃2

∫ c

−c

(c2 − s2) uR(x − s, ex) ds (7.8)

is determined as the appropriate body-frame velocity field.
Reconsider the transformations Rκ and Rϑ in § 3.1, which tilted the spheroid and

made the body rotate around the vertical axis to sweep out a cone. Applying these
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transformations in the same manner, results in the laboratory frame velocity field

v∗(x∗) = −U(x∗) + RϑRκv
(
RT

κ RT
ϑ x∗) (7.9)

whose boundary conditions are

v∗(x∗
0 ) = −U(x∗

0 ) + V ∗(x∗
0 ),

lim
x∗→∞

v∗(x∗) = 0,

}
(7.10)

where U(x) = ω (y, −x, 0), as before, and

V ∗(x∗) = RϑRκ V
(
RT

κ RT
ϑ x∗)

= σ̇

⎛
⎜⎝

−y∗ cos κ + z∗ sin κ sin ϑ(t)

x∗ cos κ − z∗ sin κ cos ϑ(t)

sin κ(−x∗ sin ϑ(t) + y∗ cos ϑ(t))

⎞
⎟⎠ . (7.11)

A discussion of Euler angles and general rigid-body motions in Appendix E shows
that the boundary-value problem in (7.4) is the correct one to consider, before a
transformation to the laboratory frame is applied, to model an added rotation of the
spheroid about its major axis as it sweeps out a cone.

A comparison between trajectories with and without this additional axial rotation
is given in figures 20 and 21 for cone angle κ = 45◦ and eccentricity e = 0.95. These
figures also show the corresponding trajectories in the generator body frame found
through the transformation in (4.8). The boundary conditions in this body reference
frame are

v′(x ′
0) = σ̇Rκ

(
ex × RT

κ x ′
0

)
= σ̇ (Rκ ex × x ′

0),

lim
x→∞

v′(x ′) = U(x ′)

= −ω(ex × x ′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.12)

where the vector Rκ ex = (sin κ, 0, cos κ) is aligned along the tilted spheroid’s major
axis. Consequently, the body frame of reference is that of a spheriod tilted in the
(x ′, z′)-plane by an angle κ , rotating about its major axis in the counterclockwise
direction with rate σ̇ , while embedded in a clockwise rotation of the (x ′, y ′)-plane with
rate ω. The closed orbits on the right-hand sides of figures 20 and 21 generate the
laboratory-frame trajectories given on left.

In figure 7, a collection of body-frame orbits that climbed and wrapped the spheroid
was presented. Initial positions dictated whether a fluid particle passed in front of
the spheroid or routed around the body enclosing it. The intermediate motion was
one for which a fluid particle climbed along the length of the spheroid to its tip. The
analogous image for an added axial rotation is shown in figure 22. In particular, the
transition between generator frame trajectories that enclose the spheroid, and those
that do not, is illustrated. The body-frame orbits in figure 22 are determined from
the same ten initial positions of figure 7, without the axial rotation. In that figure,
small changes in initial position (x0 = − 0.2349584 to x0 = − 0.2349587) resulted in
noticeably different trajectories as fluid particles climbed farther up the length of the
spheroid. When an axial rotation rate is present, these trajectories in figure 22 are
not as easily distinguished, although still present. Figure 22 demonstrates that the
transition between bypassing or containing the spheroid is a body-frame generator
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(a) (b)

x
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x

Figure 20. (a) Laboratory-frame trajectories and (b) the corresponding generators of a
spheroid that experiences no secondary rotation about its major axis. The initial conditions
are the same as those in figures 2 and 3 but with cone angle κ = 45◦ and eccentricity e = 0.95.
These trajectories are a comparative reference for the trajectories in figure 21 which result
from an additional axial rotation of the spheroid about its major axis. Insets show view from
the top.

which nearly closes on itself before veering off and passing in front of the body. At this
axial rotation rate, each sampled initial position produces a generator that bypasses
the spheroid. As the axial rotation rate increases, however, generators begin to route
around the body enclosing it as depicted in figure 23 for σ̇ = 10

√
5 ω. For large axial

rotation rates σ̇ , the body-frame velocity field is dominated by the distribution of
rotlets in (7.8) which are aligned along the spheroid’s major axis. The rotlet velocity
field results from a point source of torque applied to Stokes flow, accounting for the
circular-like generators also observed in figure 21 (for σ̇ = 100

√
5 ω).

Figures 20 to 25 display a rich collection of laboratory frame trajectories with
greatly varying properties. An enhanced vertical fluctuation is evident in the fluid
particle motion induced by the secondary added axial rotation. Figure 25 shows
greyscale density plots of polar amplitude and vertical fluctuation for cone angle
κ = 30◦ and eccentricity e = 0.95 when the axial rotation rate is σ̇ = 2ω. The density
plots display the spatial structure of these trajectory properties as a function of initial
position (x0, 0, z0) as defined and discussed in § 4. The reflectional symmetry about the
plane containing the z-axis (the direction of the precession angular velocity vector)
and the body’s axis is maintained with an added axial rotation, as evident from the
lateral view depicted in figure 24. It is further observed that trajectory properties, over
varying initial position, are similar in structure when the axial rotation rate is fixed.
This is additionally apparent in figures 9 and 14 which depict polar amplitude and
vertical fluctuation when there is no axial rotation of the spheroid.

Finally, we remark that the far-field asymptotic analysis of the previous section
can be easily expanded to account for the additional axial rotation parameter, which
modifies the singularity distribution by an extra rotlet contribution.

8. Conclusion and discussion
We have presented a detailed study of the exact low-Reynolds-number

hydrodynamic motion induced by a prolate spheroid sweeping a symmetric double
cone, with and without secondary body spin. This fluid flow exhibits strong
three dimensionality, spheroid geometry dependence, and Lagrangian trajectories
characterized by orbits and epicycles. Typically, outside the cone structure, these
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Figure 21. Laboratory-frame trajectories (left) resulting from a spheroid which rotates about
its major axis as it sweeps out a cone and the corresponding generators (right) in the body
frame of reference described by (7.12). The trajectories are shown for cone angle κ = 45◦ and

eccentricity e = 0.95 with axial rotation rates σ̇ =
√

5 ω, 10
√

5 ω, 100
√

5 ω (top to bottom)
where ω = 2π is the rotation rate of sweeping out a cone. The initial conditions are the same
as those in figures 2 and 3. Insets show top views, with body rendered translucently for panels
on the right-hand side in order to show entire generator orbits.

orbits are characterized by slow orbits, and fast epicycles roughly commensurate with
the rod rotation rate, while inside and near the cone structure, the behaviour is more
complicated. By appealing to a generator written in the body-frame coordinates,
the motion can be recognized as autonomous, and in all cases studied, the orbits
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(a) (b)

Figure 22. Body-frame orbits from an axial rotation of a spheroid with rate σ̇ = 0.078491
√

5 ω

(a) and rate σ̇ = 0.078492
√

5 ω (b) where ω = 2π is the rate of the background rotation. The
cone angle κ = 60◦, eccentricity e = 0.995, and initial positions (x0 CR, 0, 0.65 CH) are the same
as those in figure 7 in which the spheroid does not rotate about its major axis. The values
of x0 are provided in the key of figure 8 and vary between −0.3 CR and −0.2 CR. As the
axial rotation rate increases, the red periodic orbit (generator) transitions from enclosing the
spheroid in (b) to passing in front of it. The inset figure shows that the generator, in its
flyby in front of the spheroid, is close to a self-intersecting topological figure of eight curve,
indicating the possibility of existence of a pair of homoclinic connections encircling the body
and emanating from a fixed point at the intersection.

Figure 23. Body-frame orbits from an axial rotation of a spheroid with rate σ̇ = 10
√

5 ω
where ω = 2π is the rate of the background rotation. The cone angle κ = 60◦, eccentricity
e = 0.995, and initial positions (x0 CR, 0, 0.65 CH) are the same as those in figure 7 and figure
22 in which the spheroid does not rotate about its major axis. In the inset, the corresponding
laboratory-frame trajectories are shown for the left- and right-most generators. As σ̇ increases,
the velocity field is dominated by rotlet singularities directed along the spheroid’s major axis.

σ• = 0 σ• = 10√
—

 5w(a) (b)

Figure 24. Lateral views (projection on the (x, z)-plane) of periodic orbits of rate σ̇ generated
by the same initial conditions as in figure 20 with (b) or without (a) axial rotation. The
projection brings forth the reflectional symmetry with respect to the (x, z)-plane of generic
periodic fluid particle trajectories (the portions of the orbit above and below this plane project
onto the same curve segment in the (x, z)-plane).
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Figure 25. Greyscale density plots of polar amplitude (a) and vertical fluctuation (b) measured
on trajectories from a spheroid that rotates about its major axis with rate σ̇ = 2ω while it
sweeps out a cone at a rate ω = 2π once. The trajectories are initialized at the position (x0, 0, z0).
Greyscale is the trajectory property while the horizontal axis is x0 (measured in cone radius
CR) and the vertical axis is z0 (measured in cone height CH).

close. Numerical results from integrating the particle motion induced by this exact
mathematical solution show the possibility of a three-dimensional separatrix in the
body-frame coordinate system. Detailed numerical studies present a spatial mapping
of the behaviour of the Lagrangian trajectories as characterized by their epicycle
size, angle travelled, vertical fluctuation and arclength. We have additionally found
an invariant at far field and small cone angles which reduces the particle motion
equations to a two-dimensional steady nonlinear perturbation of the flow induced
by a single steady rotlet. Lastly, the effect of an independent spin of the spheroid
as it rotates was developed and assessed. It is seen that this additional spin can
dramatically increase vertical fluctuation in the Lagrangian trajectories.

These studies directly tie into the observation of particle motion in actuated
nano-scale fluidics, where controlled actuation of nano-rods using a magnetic force
microscope has induced similar motion as the spheroids studied in the present
manuscript, and additionally those studies have seen similar epicycle and orbit
trajectories of micrometre and sub-micrometre scale beads (Fisher et al. 2006;
Jing 2006). Those microscopic observations of the tracer motion are often affected
by uncertainties caused by numerous factors, including the wavelength of visible
light which makes direct visible observation of the nano-scale rods difficult in vivo.
(Moreover, at present, the types of observation possible with the obstruction imposed
by the magnetic force microscope makes three-dimensional imaging extremely
difficult.) Even without the complexities associated with random thermal effects on
these scales, these uncertainties could be greatly reduced by the availability of accurate
predictive hydrodynamic theory for these geometries. For example, the presence of a
strong ‘sweet spot’ in the polar amplitude of the Lagrangian trajectories just below
the cone height could be used to supply missing experimental information, either
about the detailed rod and cone geometry, or about the relative height of the tracers
relative to the cone height. These sorts of diagnostic tools are anticipated to be useful
in the developing fields of nano-fluidics.
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While informative, the exact solution and its analysis presented here have numerous
limitations that elicit further exploration. First, spinning rod experiments typically
involve a no-slip floor at which the rod is frictionally attached. This can cause non-
negligible effects. The frictional contact of the base point can be anticipated to induce
an additional spin of the body around its major axis such as the independent spin we
have incorporated in § 7. Unfortunately, the presence of the floor also modifies the
boundary condition, and exact solutions for rotating spheroids above flat planes are
surely much more difficult. Part 2 will present a slender-body theory we have developed
using image charges introduced by Blake (1971). We are presently validating this
asymptotic theory with table-top as well as nano-scale spinning-rod experiments. The
behaviour of fluid particles in the free-space and half-space problems is qualitatively
similar, but important quantitative differences caused by the no-slip floor do emerge.
Lastly, the effects of thermal Brownian motion are expected to give rise to differences
in the Lagrangian trajectories. With the technological advances allowing for controlled
motion of bodies on nano-scales, there is the strong potential for new measurements to
lead to improved understanding of fluctuating hydrodynamic systems. The availability
of exact, or asymptotic, deterministic hydrodynamic solutions merely scratches the
surface of new phenomena anticipated on such small scales.
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Appendix A. Singularity theory
Determining solutions for Stokes flow is difficult in general for arbitrary boundary

conditions. One analytical method available for obtaining solutions is singularity the-
ory (Batchelor 1970; Chwang & Wu 1975; Wu 1978; Kim 1986; Pozrikidis 1997). The
basis is to construct solutions to particular boundary-value problems by superposition
of fundamental solutions. Fundamental solutions are found by solving Stokes
equations

µ∇2u + f = ∇p,

∇ · u = 0,

}
(A 1)

which are singularly forced by f in an unbounded fluid. The superposition
is constructed so that the boundary conditions are satisfied either exactly or
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approximately. The difficulty in the method lies in choosing the correct combination
of fundamental solutions and their spatial distributions.

The primary fundamental solution to Stokes equations is the Stokeslet. The Stokeslet
is associated to the singular point force fs = 8πµ α δ(x) applied, here, at the origin
where δ(x) is the three-dimensional Dirac delta-function. The vector α characterizes
the Stokeslet strength in magnitude and direction. The Stokeslet velocity field is given
as

uS(x; α) =
α

|x| +
(α · x)x

|x|3 . (A 2)

Since the Stokes equations are linear, any derivative of the Stokeslet solution is
also a fundamental solution. Hence, higher-order fundamental solutions to the Stokes
equations can be obtained through differentiation of uS and pS . The corresponding
fundamental singularity is found as that same derivative of fS . The Stokes doublet is
such a higher-order singularity and its velocity field is defined by

uSD(x; α, β) = (β · ∇)uS(x; α)

=
(α × β) × x

|x|3 − (α · β)x
|x|3 +

3(α · x)(β · x)x
|x|5 . (A 3)

This singularity can be further decomposed to form additional solutions. For example,
the symmetric component of the Stokes doublet with respect to its strengths gives a
fundamental solution known as the stresslet. The stresslet velocity field is given as

uSS(x; α, β) = 1
2
(uSD(x; α, β) + uSD(x; β, α))

= − (α · β)x
|x|3 +

3(α · x)(β · x)x
|x|5 . (A 4)

Further, the antisymmetric component of the Stokes doublet is a singularity known
as the rotlet. The rotlet velocity field is found to be

uR(x; γ ) = 1
2
(uSD(x; α, β) − uSD(x; β, α))

=
γ × x
|x|3 , (A 5)

where γ = α × β .
Another fundamental solution which plays a role in low-Reynolds-number flows is

the point-source dipole. It is constructed by considering an irrotational velocity field
and its associated scalar potential

u = ∇φ, (A 6)

and by placing a point source of mass in the flow field,

∇ · u = δ(x), (A 7)

located, here, at the origin. The scalar potential is then given as the fundamental
solution of the Laplacian and the associated point-source dipole velocity field is
found as

uD(x; η) = ∇
(

∇ · η

|x|

)

= − η

|x|3 +
3 (η · x) x

|x|5 . (A 8)

The point-source dipole pressure field is constant. Again, derivatives of the point-
source dipole are also fundamental solutions.



190 R. Camassa, T. J. Leiterman and R. M. McLaughlin

Appendix B. From the body- to the laboratory-frame
Let x0 lie on the boundary of the spheroid ∂ϑ in (3.1) which is centred about

the origin lying on the x-axis. Suppose we can obtain the velocity field u(x) whose
solution satisfies

u(x0) = 0,

lim
x→∞

u(x) = ω (y, −x, 0).

}
(B 1)

As mentioned in § 3.1, the solution to this boundary value problem is one in which the
spheroid is fixed in a rotating background flow U(x) = ω (y, −x, 0). Further suppose
we are interested in the fluid motion induced by a body rotating in a fluid which is
otherwise at rest.

Consider a spheroid lying in the (x, y)-plane and sweeping out a circle rather than
a double cone. That is, let the cone angle κ = π/2. Suppose the boundary of the body
is rotating by an angle ϑ(t). Then, at each instance of time t , the spheroid is found at

(x cos ϑ(t) − y sin ϑ(t))2

a2
+

(x sin ϑ(t) + y cos ϑ(t))2 + z2

b2
= 1. (B 2)

This is obtained by observing that each point on ∂ϑ is rotated by the unsteady
orthogonal transformation

Rϑ =

⎛
⎜⎝

cos ϑ(t) − sin ϑ(t) 0

sin ϑ(t) cos ϑ(t) 0

0 0 1

⎞
⎟⎠. (B 3)

Define x ′(t) = Rϑ (t)x. Then the velocity field in the rotated x ′-coordinate system
becomes

u′(x ′) =
dx ′

dt

=
d(Rϑ x)

dt

∣∣∣∣ x=RT
ϑ x′

=

(
Ṙϑ x + Rϑ

dx
dt

) ∣∣∣∣ x=RT
ϑ x′

= ṘϑRT
ϑ x ′ + Rϑ u

(
RT

ϑ x ′)
= −U(x ′) + Rϑ u

(
RT

ϑ x ′). (B 4)

Hence, for x ′
0 on the boundary of this moving spheriod ∂ϑ ′ defined in (B 2),

u′(x ′
0) = ω (−y ′, x ′, 0)

lim
x′→∞

u′(x ′) = 0,

}
(B 5)

by design of u(x) in (B 1). Thus, the velocity field u′(x ′) in the laboratory frame is
found simply as a transformation of the body-frame velocity field u(x), and u′(x ′)
becomes the velocity field due to a spheroid sweeping out a circle in the (x ′, y ′)-plane
in a fluid which is otherwise at rest.

To obtain the sweeping for a double cone motion, we must consider tilting the body,
say in the (x, z)-plane, before moving to the rotating laboratory frame. Consider the
boundary conditions examined by Chwang & Wu (1975) in (B 1) but, instead, for a
tilted body fixed in a background rotating flow. The boundary of a spheroid tilted in
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the (x, z)-plane by an angle κ from the z-axis is given as

(x sin κ − z cos κ)2

a2
+

y2 + (x sin κ + z cos κ)2

b2
= 1. (B 6)

This is obtained by observing that each point on ∂ϑ is tilted by the steady orthogonal
transformation

Rκ =

⎛
⎜⎝

sin κ 0 − cos κ

0 1 0

cos κ 0 sin κ

⎞
⎟⎠ . (B 7)

Note that this transformation provides no moving boundary.
Define x̃ = Rκ x. Then the velocity field in the tilted x̃-coordinate system becomes

ũ(x̃) =
dx̃
dt

=
d(Rκ x)

dt

∣∣∣∣ x=RT
κ x̃

= Rκ u
(
RT

κ x̃
)
. (B 8)

By constructing a velocity field u(x) which satisfies

u(x0) = 0,

lim
x→∞

u(x) = RT
κ U(Rκ x),

}
(B 9)

where x is defined in the body frame with the spheroid lying on the axis, it is readily

found, through (B 8), that for x̃0 on the boundary of this tilted spheriod ∂̃ϑ defined
in (B 6),

ũ(x̃0) = 0,

lim
x̃→∞

ũ(x̃) = U(x̃).

}
(B 10)

Hence, ũ(x̃) describes the velocity field due to a body tilted in the (x̃, z̃)-plane fixed
in a rotating background flow, and, more specifically, fixed in a rotation of the (x̃, ỹ)-
plane. The far-field boundary condition provided by (B 9) is the appropriate one for
such a fluid motion.

Recall that the goal is to obtain the fluid motion due to a tilted spheroid which
rotates according to the boundary conditions given in (B 5). We would like to
accomplish this goal by using the solution strategy initiated in the body frame
by Chwang & Wu (1975). To do so, we adopt the following procedure.

1. In the body frame
Solve the boundary-value problem in (B 9). This provides the fluid motion
due to a spheroid lying on the x-axis embedded in the far-field rotation
RT

κ U(Rκ x).

2. Transform the body frame
Apply the steady transformation Rκ . This provides the fluid motion due
to a tilted spheroid embedded in the rotation of a plane. This rotation is
more specifically U(x) = ω ( y, −x, 0 ).

3. Move to the laboratory frame
Apply the unsteady transformation Rϑ = Rϑ (t). This provides the fluid
motion due to a tilted spheroid rotating in a fluid otherwise at rest. The
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resulting boundary condition for a spheroid which sweeps out a double
cone is provided in (B 5).

This strategy is more precisely defined by considering the transformation
x∗(t) = RϑRκ x. At each instance of time t , this change of variables places the tilted
rotating spheroid at

((x sin κ − z cos κ) cos ϑ(t) − y sin ϑ(t))2

a2

+
((x sin κ − z cos κ) sin ϑ(t) + y cos ϑ(t))2 + (x cos κ + z sin κ)2

b2
= 1. (B 11)

Assuming we can solve the boundary-value problem in Step 1, the velocity u∗(x∗)
in the laboratory frame is found with the formulation of (B 4) in mind. That is, the
velocity field in the x∗-coordinate system becomes

u∗(x∗) =
dx∗

dt

=
d(RϑRκ x)

dt

∣∣∣∣ x=RT
κ RT

ϑ x∗

= −U(x∗) + RϑRκ u
(
RT

κ RT
ϑ x∗). (B 12)

Let x∗
0 lie on the boundary of the tilted rotating body ∂ϑ∗ in (B 11). The construction

of a solution to Stokes equations which satisfies the boundary conditions

u∗(x∗
0 ) = U∗(x∗

0 ),

lim
x∗→∞

u∗(x∗) = 0,

}
(B 13)

is verified through the definition in (B 12) and the boundary conditions imposed on
u(x).

Appendix C. Singularity distribution
Define ex = (1, 0, 0), ey = (0, 1, 0), and ez = (0, 0, 1) to be basis elements of IR3. Let

x0 lie on the boundary of the spheroid in (3.1) which is centred at the origin lying on
the x-axis. Then the velocity fields which satisfy ui(x0) = 0 for i = 1, 2, 3 and

lim
x→∞

u1(x) = ω y sin κ ex, (C 1a)

lim
x→∞

u2(x) = −ω x sin κ ey, (C 1b)

lim
x→∞

u3(x) = ω z cos κ ey, (C 1c)

are provided by Chwang & Wu (1975) as

u1(x) = ω sin κ

(
y ex +

∫ c

−c

(c2 − s2)[α1 uSS(x − s; ex, ey) + γ1 uR(x − s; ez)] ds

+ β1

∫ c

−c

(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

)
(C 2a)

u2(x) = ω sin κ

(
− x ey +

∫ c

−c

(c2 − s2)[α2 uSS(x − s; ex, ey) + γ2 uR(x − s; ez)] ds

+ β2

∫ c

−c

(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

)
(C 2b)
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u3(x) = ω cos κ

(
z ey +

∫ c

−c

(c2 − s2)[α3 uSS(x − s; ey, ez) + γ3 uR(x − s; ex)] ds

+ β3

∫ c

−c

(c2 − s2)2 ∂

∂z
uD(x − s; ey) ds

)
(C 2c)

with

γ1 =
(1 − e2)

−2e + (1 + e2) log

(
1 + e

1 − e

) , (C 3a)

α1 =
4e2

1 − e2
β1,

=

2 e2 γ1

(
−2e + log

(
1 + e

1 − e

))

2e(2e2 − 3) + 3(1 − e2) log

(
1 + e

1 − e

) , (C 3b)

γ2 =
1

−2e + (1 + e2) log

(
1 + e

1 − e

) , (C 3c)

α2 =
4e2

1 − e2
β2, (C 3d)

=

e2 γ2

(
−2e + (1 − e2) log

(
1 + e

1 − e

))

2e(2e2 − 3) + 3(1 − e2) log

(
1 + e

1 − e

) , (C 3e)

γ3 =
1 − e2

2

(
2e − (1 − e2) log

(
1 + e

1 − e

)) , (C 3f)

α3 =
4e2

1 − e2
β3,

=
2 e2 (1 − e2)

2e(5e2 − 3) + 3(1 − e2)2 log

(
1 + e

1 − e

) . (C 3g)

The required singularities to solve these boundary-value problems are the stresslet
uSS , the rotlet uR , and a derivative of the point-source dipole uD . A description of
these fundamental solutions is provided in Appendix A.

Chwang & Wu (1975) did not provide the explicit singularity distribution for u4(x)
which satisfies

u4(x0) = 0,

lim
x→∞

u4(x) = −ω y cos κ ez.

}
(C 4)

This solution is provided as a transformation of u3(x) of the form y ↔ z.
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Examine the singularities which comprise the solution of u3(x) and note, from
Appendix A, that the stresslet and point-source dipole singularities satisfy, respectively,

uSS(x; α, β) = uSS(x; β, α),

∂

∂y
uD(x; ez) =

∂

∂z
uD(x; ey).

⎫⎬
⎭ (C 5)

Recall from the same Appendix, that the rotlet singularity is defined as

uR(x; γ ) =
γ × x
|x|3 . (C 6)

where γ = α × β . Thus transforming the rotlet singularity uR(x−s; ex) in u3(x) requires
that we recall that the rotlet is a fundamental solution dependent on two directions.
Hence

uR(x − s; ex) ≡ uR(x − s; ey, ez) (C 7)

is transformed to

uR(x − s; ez, ey) ≡ −uR(x − s; ex), (C 8)

and the velocity field for a prolate spheroid held fixed in a flow which is in the
z-direction and sheared in the y-direction with the free-stream velocity −ω y cos κ ez

is

u4(x) = ω cos κ

(
−y ez +

∫ c

−c

(c2 − s2)[α4 uSS(x − s; ey, ez) + γ4 uR(x; ex)] ds

+ β4

∫ c

−c

(c2 − s2)2 ∂

∂z
uD(x − s; ey) ds

)
(C 9)

where

γ4 = γ3

=
1 − e2

2

(
2e − (1 − e2) log

(
1 + e

1 − e

)) , (C 10)

α4 = − α3

= − 4e2

1 − e2
β3

=
4e2

1 − e2
β4

=
2 e2 (1 − e2)

2e(3 − 5e2) − 3(1 − e2)2 log

(
1 + e

1 − e

) . (C 11)

This is verified by Leiterman (2006) where the Stokes velocity solution u4(x) defined
by (C 4) is provided as the solution to an integral equation evaluated along the
boundary of the spheroid

x2

a2
+

y2 + z2

b2
= 1 (a > b), (C 12)

held fixed in the far-field shear flow −ω y cos κ ez.



Rod spinning in a viscous fluid. Part 1 195

Appendix D. Integrals in closed form
The singularity distribution for the velocity field in (3.14) involves integrals of the

stresslet uSS , rotlet uR and a derivative of the point-source dipole uD which have closed
algebraic and logarithmic forms. The basic fundamental solutions mentioned are
described in Appendix A. The integrals involving these singularities required for the
construction of (3.14) are tabulated below. Let s = (s, 0, 0), ex = (1, 0, 0), ey = (0, 1, 0),
and ez = (0, 0, 1). Define

r2 = x2 + y2 + z2,

r2
s = y2 + z2.

}
(D 1)

Stresslet distribution

∫
(c2 − s2) uSS(x − s; ex, ey) ds =

∫
3 (x − s) y (c2 − s2)

((x − s)2 + y2 + z2)5/2

⎛
⎝x − s

y

z

⎞
⎠ds. (D 2)

(i)

∫
3 (x − s)2 y (c2 − s2)(

(x − s)2 + r2
s

)5/2
ds

=
y
(
−c2(x − s)3 + xr4 + 3xs2

(
x2 − 3r2

s

)
+ s3
(
−x2 + 4r2

s

)
+ 3s
(
−x4 + r4

s

))
r2
s

(
(x − s)2 + r2

s

)3/2

− 3y log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣. (D 3)

(ii)

∫
3 (x − s) y (c2 − s2)

((x − s)2 + r2
s )5/2

(
y

z

)
ds

=
−2x(x3 − s3) − 4x2r2

s + 6sxr2 − 3s2(x2 + r2) + r2
s

(
c2 − 2r2

s

)
r2
s

(
(x − s)2 + r2

s

)3/2

(
y2

yz

)
. (D 4)

Rotlet distributions

∫
(c2 − s2) uR(x − s; ez) ds =

∫
(c2 − s2)

((x − s)2 + y2 + z2)3/2

⎛
⎝ −y

x − s

0

⎞
⎠ds, (D 5a)

∫
(c2 − s2) uR(x − s; ex) ds =

∫
(c2 − s2)

((x − s)2 + y2 + z2)3/2

⎛
⎝ 0

−z

y

⎞
⎠ds. (D 5b)

(i)

∫
(c2 − s2) (x − s)(
(x − s)2 + r2

s

)3/2
ds =

c2 + s2 − 4sx + 2r2√
(x − s)2 + r2

s

+ 2x log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣. (D 6)
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(ii)∫
(c2 − s2)(

(x − s)2 + r2
s

)3/2

(
y

z

)
ds

=

[
−c2(x − s) + s

(
− x2 + r2

s

)
− xr2

r2
s

√
(x − s)2 + r2

s

− log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣
](

y

z

)
.

(D 7)

Point-source quadripole distribution∫
(c2 − s2)2 ∂

∂y
uD(x − s; ex) ds

=

∫
3 (c2 − s2)2

((x − s)2 + y2 + z2)5/2

⎛
⎝ y

x − s

0

⎞
⎠ds

−
∫

15 (c2 − s2)2 (x − s) y

((x − s)2 + y2 + z2)7/2

⎛
⎝x − s

y

z

⎞
⎠ds. (D 8)

(i)∫
3 (c2 − s2)2(x − s)(

(x − s)2 + r2
s

)5/2
ds

=
(c4 − 3s4)r2

s − 4s3x
(
x2 − 7r2

s

)
+ 4r4

(
x2 − 2r2

s

)
− 12sx

(
x4 − 2x2r2

s − 3r4
s

)
r2
s

(
(x − s)2 + r2

s

)3/2

+
12s2
(
x4 − 4x2r2

s − r4
s

)
+ 2c2(2s3x + 6sxr2 − 2r4 − 3s2(x2 + r2))

r2
s

(
(x − s)2 + r2

s

)3/2

− 12x log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣. (D 9)

(ii)∫
3 (c2 − s2)2y(

(x − s)2 + r2
s

)5/2
ds

=
−c4(x − s)

(
2(x − s)2 + 3r2

s

)
+3s
(
2x6+7x4r2

s + 4x2r4
s −r6

s

)
+ 2s3

(
x4 + 3x2r2

s − 2r4
s

)
r4
s

(
(x − s)2 + r2

s

)3/2

−
6s2x3

(
x2 + 3r2

s

)
+ xr4

(
2x2 + 5r2

s

)
+ 2c2(6sx2r2 − 2xr4 + (s3 − 3s2x)(x2 + r2))

r4
s

(
(x − s)2 + r2

s

)3/2

+ 3y log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣. (D 10)

(iii)∫ −15 (c2 − s2)2 (x − s)2 y(
(x − s)2 + r2

s

)7/2
ds

=
y(2c2(x − s)

(
c2 − 2x2 − 3r2

s

)
+ (x − s)

(
2x4 + 18x2r2

s

)
+ 23sr4

s + 37xr4
s )

r4
s

√
(x − s)2 + r2

s
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φE

k̂ ∗

k̂

θ E

ĵ ∗

ĵ

î ∗ψ E

iî

Figure 26. The Euler angles φE, θE, ψE specify general rigid-body rotations.

+
3y
(
c4(s − x) + s

(
x4 − 6x2r2

s + r4
s

)
− x
(
x4 − 2x2r2

s − 3r4
s

)
− 2c2

(
s
(
x2 − r2

s

)
− xr2

))
(
(x − s)2 + r2

s

)5/2

−
y
(
c4(s − x) + s

(
x4 − 36x2r2

s + 11r4
s

)
+ x
(

− x4 + 16x2r2
s + 29r4

s

))
r2
s

(
(x − s)2 + r2

s

)3/2

+
y
(
2c2
(
x
(
x2 + 4r2

s

)
+ s
(

− x2 + 6r2
s

)))
r2
s

(
(x − s)2 + r2

s

)3/2

− 15y log
∣∣(x − s) −

√
(x − s)2 + r2

s

∣∣. (D 11)

(iv)∫
15 (c2 − s2)2 (x − s) y

((x − s)2 + y2 + z2)7/2

(
y

z

)
ds

=

[
8x(x − s)(c2 − x2) − 12x(x − s)r2

s − 15r2
s − 30y2z2

r4
s

√
(x − s)2 + r2

s

−
3
(
c4 − 3x4 − 2x2r2

s + r4
s + 4sx

(
x2 − r2

s

)
+ 2c2(−2sx + r2)

)
(
(x − s)2 + r2

s

)5/2

+
2
(

− 2x4 − 3x2r2
s + 5r4

s + 2sx
(
x2 − 6r2

s

)
+ c2
(

− 2sx + 2x2 + 5r2
s

))
r2
s

(
(x − s)2 + r2

s

)3/2

](
y2

yz

)
.

(D 12)

Appendix E. Euler angles and an additional rotation
The boundary condition on the spheroid in (7.10) can more specifically be provided

as

U∗(x∗) + V ∗(x∗) = Ω × x∗ (E 1)

where

Ω =

⎛
⎜⎝

σ̇ sin κ cos ϑ(t)

σ̇ sin κ sin ϑ(t)

ω + σ̇ cos κ

⎞
⎟⎠ (E 2)

is the angular velocity vector.
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General rigid-body rotations can be specified through three Euler angles φE, θE, ψE

(Goldstein 1950). The motion is provided in terms of three rotations.

1. Rotation through an angle φE about the axis î, ĵ , k̂.

2. Rotation through an angle θE about the new î axis ī .
3. Rotation through an angle ψE about the new k̂ axis k̂∗.

The Euler angles specify the position of the body by providing three orthogonal

directions î∗, ĵ ∗, k̂∗ defined relative to the body. This defines a body coordinate

system and the description is shown in figure 26. The orientation of the î, ĵ , k̂
system relative to the î∗, ĵ ∗, k̂∗ system is completely determined by φE, θE, ψE . The
transformation from the fixed coordinate system to the body coordinate system is
provided by

S = SψE
SθE

SφE
, (E 3)

where

SφE
=

⎛
⎜⎝

cos φE sin φE 0

− sin φE cos φE 0

0 0 1

⎞
⎟⎠ , SθE

=

⎛
⎜⎝

1 0 0

0 cos θE sin θE

0 − sin θE cos θE

⎞
⎟⎠ , (E 4a, b)

SψE
=

⎛
⎜⎝

cos ψE sin ψE 0

− sin ψE cos ψE 0

0 0 1

⎞
⎟⎠ . (E 4c)

The angular velocity vector

Ω̄ ≡

⎛
⎜⎝

Ω1

Ω2

Ω3

⎞
⎟⎠ (E 5)

of the body relative to the axis î, ĵ , k̂ is

ST Ṡ =

⎛
⎜⎝

0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎞
⎟⎠ , (E 6)

and it can be expressed in terms of the rate of change of the Euler angles as

Ω̄ =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ φ̇E +

⎛
⎜⎝

cos φE

sin φE

0

⎞
⎟⎠ θ̇E +

⎛
⎜⎝

sin θE sin φE

− sin θE cos φE

cos θE

⎞
⎟⎠ψ̇E. (E 7)

The Euler angles for the boundary condition in (E 1) which represents a body
revolving about its major axis as it sweeps out a cone are as follows
(i) φE = ϑ(t) + π/2.

(This is a time-dependent rotation of the spheroid in the (î, ĵ )-plane with π/2

signifying that the initial orientation of the tilted body in the ∗ frame is in the (î∗, k̂∗)-
plane.)
(ii) θE = κ.

(This is a steady rotation which tilts the spheroid by an angle κ in the (ī, k̂)-plane.)



Rod spinning in a viscous fluid. Part 1 199

(iii)ψE = σ (t).
(This is a time-dependent rotation about the major axis of the tilted spheroid

sweeping out a cone, which is aligned with the k̂∗-axis.)
As expected, we have

Ω̄ =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ω +

⎛
⎜⎝

sin κ cos ϑ(t)

sin κ sin ϑ(t)

cos κ

⎞
⎟⎠ σ̇ = Ω. (E 8)
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